

FEM prediction of particle erosion in turbomachinery cooling

F. Rispoli¹, D. Borello¹, L. Cedola¹, A. Salvagni¹, P. Venturini¹ and T. E. Tezduyar²

¹ Dipartimento di Ingegneria Meccanica e Aerospaziale

Sapienza Università di Roma, Rome, 00184, Italy

franco.rispoli@uniroma1.it

² Department of Mechanical Engineering,

Rice University, Houston, TX 77005, USA

tezduyar@gmail.com

Key Words: V-SGS, YZ-Beta, URANS, Erosion

Gas turbine flows are turbulent, compressible and often laden by particles. In aeronautical applications, flows usually drag sand, dust, ash and soot from the combustors. Such particles may impact on external surface of the blades giving rise to deposit formation and erosion. Moreover, air coming from the compressor is spilled and sent to the internal cooling channels, hence the particles entrained by the flow can result in problems also in the cooling channels. We compute the compressible flow field in a turbine cooling system, using the $YZ\beta$ shock capturing scheme proposed by Tezduyar and Senga [1] combined with the Variable Subgrid Scale (V-SGS) formulation proposed by Rispoli and Saavedra [2] and based on the Hughes Variational Multiscale method [3]. Turbulent flow is predicted by using a two-equations URANS closure. Solid particles are simulated using a lagrangian one-way coupling approach. Erosion is evaluated according to the Tabackoff model [4]. This model accounts for the main parameters affecting the erosion such as impact velocity and angle, as well as material properties of both particles and target surface.

The influence of particle size on erosion, and the detection of regions more exposed to the risk of erosion represent the targets of the present work.

REFERENCES

- [1] Tezduyar T.E., Senga M., Stabilization and shock-capturing parameters in SUPG formulation of compressible flows, *Comp. Meth. in App. Mech. and Engineering*, 2006, Vol 195, pp 1621-1632
- [2] Rispoli F., Saavedra R., A stabilized finite element methods based on SGS models for compressible flows, *Comp. Meth. in App. Mech. and Engineering*, 2006, Vol 196, pp 653-664
- [3] Hughes, T.J.R., Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, *Computer Methods in Applied Mechanics and Engineering*, Vol. 127, Issue 1-4, 1995, pp. 387-401
- [4] Tabackoff W., Kotwal R., Hamed A., Erosion study of different materials affected by coal ash particles, *Wear* (1979), 52, 161-173